Die Kristallstrukturen von YAg₂, YAu₂ und YZn₁₂

Von

J. B. Kusma und E. Laube

Aus dem Institut für Physikalische Chemie der Universität Wien

(Eingegangen am 9. Juni 1965)

Die Phasen YAg₂, YAu₂ und YZn₁₂ werden aus den metallischen Komponenten hergestellt und kristallchemisch untersucht. YAg₂ und YAu₂ gehören zum MoSi₂-Typ und YZn₁₂ zum ThMn₁₂-Typ.

The phases YAg_2 , YAu_2 and YZn_{12} have been prepared from the components and examined by X-rays. YAg_2 and YAu_2 are crystallizing with the MoSi₂-type and YZn_{12} with the ThMn₁₂-type.

Herstellung der Proben

Frisch gefeiltes Yttrium wurde zusammen mit Silber- bzw. Gold- bzw. Zinkpulver in Quarzampullen unter Vakuum eingeschmolzen und zur Reaktion gebracht. Anschließend wurden die Proben mit YAg₂ und YAu₂ 100 Stdn. bei 900° C, die Proben mit YZn₁₂ 50 Stdn. bei 450° C geglüht.

Die Phasen YAg₂ und YAu₂

In den Systemen Gd(Dy)—Ag(Au) sind bereits Verbindungen mit MoSi₂-Struktur bekannt¹. Es konnten daher die analogen Phasen in den Zweistoffen mit Yttrium erwartet werden. In Pulveraufnahmen von Legierungsproben bei Ansätzen Y : (Ag, Au) = 1,2:2 tritt auch der MoSi₂-Typ auf. Neben YAu₂ waren nur geringe Mengen anderer Phasen, hauptsächlich Y₂O₃, feststellbar. In den Legierungen mit YAg₂ lag außer Y₂O₃ noch freies Silber vor, obwohl ein Yttrium-Überschuß eingesetzt war. Die Gitterparameter schließen sich gut an die Werte der bisher gefundenen *SE*-Verbindungen vom MoSi₂-Typ an¹ (Tab. 1).

¹ N. C. Baenzinger und J. L. Moriarty, Acta Crystallogr. 14, 946, 948 (1961].

J.B. Kusma u.a.: Kristallstrukturen von YAg2, YAu2 und YZn12 1497

Phase	a, (Å)	c, (Å)	c/a
YAg ₂	$3,69_1$	$9,24_1 \\ 9,00_5$	$2,50_4$
YAu ₂	$3,66_7$		$2,45_6$

Tabelle 1. Gitterparameter von YAg2 und YAu2

Auswertung und Intensitätsberechnung von $\rm YAu_2$ geht aus Tab. 2 hervor.

Tabelle 2. Auswertung einer Debye-Scherrer-Aufnahme von YAu₂; CuKα-Str.

(hkl)	$10^3 \cdot \sin^2 \vartheta$ gem.	10 ³ · sin ² ⁹ ber.	Inte gesch.	nsität ber.
(002)		29,3		7,5
(101)	51,4	51,4	ss	15,5
(110)	88,4	88,2	\mathbf{st}	84,3
(103)	110,2	110,0	sst	123,0
(004)		117,1)		1,3
(112)	117,5	117,5	SSS	5,3
$(200)^{'}$	176,6	176,6	m	30,2
(114))	207.1	205,3}		2,4
(202)	205,4	205,9	SSS	2,4
(105)		227,1)		2,0
(211)	227,7	228,0	SSS	4,0
(006)	263,7	$263,5^{'}$	ss	7,9
(213)	286,3	286,6	st	55,3
(204)		293,7		1.4
(116)]	050.0	351,7)		19,8
(220)	352,1	353,1	m +	9.9 diffus
(222)		382,4	_	0,9
(107)		402,8		0,8
(301)		404,6		0,8
(215)		405,7		1,7
(206))	440.0	440,1)		14,2
(310)	440,6	441,4	m —	14.2 diffus
(303)	463,2	$463,2^{-}$	SS	13,3
(008)	Market manual	468,5	_	0,2
(224)		470,2		0,7
(312)	•	470,7		1,4
(118)		556,7		0,6
(314)		558,5		1,2
(217)	·	579,4		1,2
(305)		580,3		0,6
(321)		581,1		1,2
(226)	616,7	616,6	s	10,6
(109)	620.2	637,1		10,6
(323)	039,4	639,7 <i>j</i>	m	21,1 diffus
(208)		645,1	_	0,6
(316)	705 5	704,9		21,7
(400)	705,5	706,2∫	\mathbf{m}	5,4 diffus

[Mh. Chem., Bd. 96

(hkl)	$10^3 \cdot \sin^2 \theta$	10 ³ · sín ² θ	Interest	ensität ber
(0010)		732,1		0,2
(402)		735,5		0,6
(307)		756,0	_	0,7
(325)		756,8	_	1,3
(411)		757,7		1,3
(330)	794,6	794,5	SS	6,2
(219)	813,3	813,7	m —	26,2
(413)	816,0	816,3	\mathbf{m}	26,3
(1110)		820,3	_	0,8
(228)		821,6	_	0,8
(404)		823,3	_	0,8
(332)		823,8		0,8
(420)	883,0	882,8	s	16, 6
(2010)		908,7		1,1
(318)	~	909,9		2,2
(334)		911.6		1,1
(422)		912,1		2,2
(1011)		929,9		1,3
(327)		932,5		2,6
(415)		933,4		2,6
(406)	969,8	969.7	m	38,6

Fortsetzung (Tabelle 2)

Die Verbindung YZn₁₂

Im System Y—Zn wurde, wie früher mitgeteilt², eine Zn-reiche Phase gefunden, deren röntgenographisches Linienmuster dem der Verbindung YZn_5^2 ähnlich war. Es wurde zunächst vermutet, daß es sich um eine dem CaCu₅-Typ ähnliche Struktur handelt, z. B. Th₂Zn₁₇³. Eine einwandfreie hexagonale Indizierung des Debyeogramms war jedoch nicht möglich, es ergab sich vielmehr Isotypie mit dem tetragonalen ThMn₁₂. Tatsächlich besitzt die ThMn₁₂-Struktur pseudohexagonale Symmetrie^{1, 4}. YZn_{12} kristallisiert demnach in der Raumgruppe D_{4h}^{17} —I4/mmm mit den Gitterparametern:

$$a = 8,87_5$$
 Å, $c = 5,19_2$ Å und $c/a = 0,585$.

Auf Grund kristallgeometrischer Überlegungen wurden die Parameter gegenüber denen von Th Mn_{12} geringfügig geändert (Tab. 3). Zwischen geschätzten und berechneten Intensitäten ergab sich damit gute Übereinstimmung (Tab. 4). Die Atomabstände sind aus Tab. 5 ersichtlich.

² E. Laube und J. B. Kusma, Mh. Chem. 95, 1504 (1964)

³ E. S. Makarov und S. I. Winogradow, Kristallografija 1, 634 (1956).

⁴ J. V. Florio, R. E. Rundle und A. I. Snow, Acta Crystallogr. 5, 449 (1952).

H. 5/1965] Kristallstrukturen von YAg₂, YAu₂ und YZn₁₂

Tabelle 3. Punktlagen der Verbindung $YZn_{12} - 14/mmm$

2 Y in a) 8 Zn in f) 8 Zn in i) mit x = 0.3538 Zn in j) mit x = 0.285

Tabelle 4. Auswertung der Debye-Scherrer-Aufnahme einer Legierung mit 8,3 At% Y, Rest Zn. Phase YZn₁₂

(hkl)	$10^3 \cdot \sin^2 \theta$ gem.	$10^3 \cdot \sin^2 \theta$ ber.	Intens gesch.	ität ber.
(110)		15,1		0,2
(101))	80.3	29,5		0,4
(200)	30,Z	30,1	SS	2,0
(211)	50.0	59,7		2,7
$(220)\int$	59,8	60,2	s	0,3
$(310)^{-1}$	75,1	$75,3^{-1}$	SSS	1,6
(002)	00.4	88,0ן		6,2
(301)∫	89,4	89,8∫	m +	16,4
$(112)^{'}$		103,1		0,0
(202)		118,1		27,1
$(321)_{l}^{t}$	119,8	119,9	sst	35,2
(400)]		120,5		21,4
(330)	135,5	135,5	ss	1,5
(222)		148,3		21,1
(411)	149,5	150,0	\mathbf{st}	8,2
(420)		150,6		11,2
(312)	163,4	163,3	SSS	1,0
(510)	195,6	195,8	SSS	1,6
(103)		205,5		0,0
(402)		208,5		0,2
(431)	910.4	210,3)		0,9
(501)∫	210,4	210,3	SSS	0,0
$(332)^{'}$	223,3	$223,6^{'}$	SSS	1,35
(213)	235,7	235,7	SSS	0,3
(422)		238,6		2,3
(521)	239,5	240,4	s-diff.	0,4
(440)		241,0		1,7
(530)	256,1	256,0	SS	2,4
(303)	266,0	265,8	SS	2,9
(600)		271,1		0,4
(512)	284,0	283,8	SSS	1,7
(323)	295,8	295,9	s	7,9
(611)	301.4	300,6 J	888	0,7
(620)	,	301,2)	na na na	1,9
(413)		326,0		2,2
(442)	328,2	329,0 }	s—diff.	1,2
(541)		330,7		2,1
(532)	343,8	344,0	ss	2,9
(004)	352,1	352,0	SS	4,0

Fortsetzung	(Tabelle	4)
-------------	----------	----

(ħkl)	10 ³ • sin ² θ gem.	10 ³ · sin ² 9 ber.	Intensität gesch.	ber.
(602)}		359,1		9,3
(631)	360,5	360,9}	m	7,1
(114)		$367,1^{'}$		0,0
(550))		376,5)		1,1
(710)	376,5	376,5	ss—sss	0,9
(204)	—	382,2'		0,08
(433)	—	386,3		0,3
(503)		386,3		0,0
(622)		389,2		2,4
(701)	390.0	391,0	s-diff.	0,1
(640)		391.6		0,3
(224)		412.3		0,03
(523)		416.4		0,15
(721)	420.1	421.1	ss—sss diff.	0,95
(314)		427.3		0.2
(730)		436.8		0.2
(552)		464.5)		1.6
(712)	464,3	464.5	SS	1.3
(404)	472.1	472.5	8	4.5
(613)		476.6		0.3
(642)		479.6)		3,9
(651)	480.8	481.4	s +	0.3
(800)		481.9		2,7
(334)		487.6		0,4
(424)	502, 6	502, 6	SS	3,1
(543)	507,0	506,8	SSS	1,1
(741)		511,5		0,3
(811)	511,4	511,5	SSS	0,1
(820)		512,1		1,0
(732)		524.8		0,4
(633)	536.6	536,9	s—ss	4,0
(660)	541,8	542,2	SSS	1,3
(514)	547,9	547,8	SSS	0,6
(750)		557,2		0,0
(105)		557, 6		0,0
(703)		567,0		0,0
(802))		569,9)		0,2
(831)	571,3	571,7	s —	3,0
(215)		$587,7^{-}$		0,0
(444)	592,9	593,0	SSS	0,9
(723)	597,1	597,1	SSS	0,6
(822))	001 1	600,1]		1,1
(840)	601,4	602,4	SS	1,3
$(534)^{-1}$	608,2	608,1	SSS	1,4
(910))	04 = 0	617,5]	202	0,5
(305)	017,0	617,8 <i>]</i>	888	0,9
(604)		623,1	—	0,2
(662)		630,2		0,0

Fostestand	(Tahollo	11
r oriseizana	1 Labelle	£]

(ħkl)	10 ³ • sin ² θ gem.	10 ³ • sin ² 9 ber.	Intensi gesch.	tät ber.
(901)		632,0	. <u> </u>	0,0
(752)	*	645,3		0,0
(325)	647,9	647,9	S 8	2,9
(624)	652,8	653,2	SSS	1,4
(653)		657,4		0,3
(761))		662,1)		1,0
(921)	662,0	662,1	888	0,25
(930))		677,7)		1,0
(415)	677,6	678,1	SSS	0,9
(743)	·	$687.5^{'}$		0,2
(813)		687,5		0.1
(842)		690,4		0.6
(851)		692.2		0.1
(912)	705.8	705.5	SSS	1.0
(554))		728.5)		1.3
(714)	728,5	728.5	SSS	1.0
(770))		738.0)		1.0
(435) (737,8	738.3	SSS	0.2
(505)		738.3		0.0
(644)	743.9	743.6	888	0.4
(833)	747.7	747.7	88	3.0
(941)	752.3	752.4	SSS	0.6
(860)		753.0		0,0
(1000)		753.0		0.0
(932))		765.7)		2.1
(525)	766,4	768.4	SS	0.1
(1011))		782.6)		1.1
(1020)	782,5	783.2	SSS	0.25
(734))		788.8)		0.4
(006)	790,3	792.1	SSS	0.35
(950)	798.1	798.2	88	1.8
(116)		807.1		0.0
(903)		808.0		0.0
(206)	822.1	822.2	888	2.6
(772))	,	826,0)		2.3
(615)	826,7	828.7	SSS	0.3
(804)	834,0	834.0	s	5.3
(763)	·	838.1)		1.3
(923)	838,4	838.1	SSS	0.3
$(862)^{'})$		841.01		5.2
(1002)	841,0	841,0	\mathbf{m}	4,1
$(1031)^{2}$	842,9	842.8	SSS	0.2
(226)	852,3	852,3	ss-sss	3,1
(545)	858,5	858,8	SSS	1,2
(824)	863,9	864,1	SSS	2,35
(316)		867,4		0,2
(952)		868,2		0,1
(1022)	871,0	871,2	SS	4,0

(hkl)	$10^3 \cdot \sin^2 \vartheta$	$10^3 \cdot \sin^2 \theta$	Inten	sität
	gem.		geson.	
(871))		872,9)		0,9
(1040)	873,3	873,5	sss —	0,9
(952))		886,2)		4,8
(635)	887,5	888,9	\mathbf{m}	5,4
(664)	894,0	$894,2^{'}$	ss	3,6
(961)		903,0		0,8
(754)		909,3		0,0
(406)		912,6		0,1
(1110)		918,7		0,0
(705)		919,0		0,15
(336))		927,6)		0,6
(943)	928,1	928,5	SSS	1,1
(1101)	933,0	$933,2^{'}$	SSS	1,5
(426)	942,7	942,7	SSS	1,2
(725)	949,4	949,2	SSS	1,4
(844)	954,6	954,5	s +	6,2
(1013)	958, 6	958, 6	SSS	2,5
(1042)	961,6	961,5	s	3,9
(1051)		963,3		2,6
$(1121)^{t}$	963, 6	963,3	m	6,8
(880)		963,9		2,4
(914)	969,5	969,5	SS	2,8
(970)		978,9		0,0
(1130)	_	978, 9		0,7

1502 J.B. Kusma u. a.: Kristallstrukturen von YAg2, YAu2 und YZn12

Fortsetzung (Tabelle 4)

Tabelle 5. Atomabstände bei YZn₁₂ in Å

YZn	ZnZn
	$\begin{array}{c} 2,59 \ (4\times) \\ 2,60 \ (2\times) \\ 2,61 \ (1\times) \\ 2,70 \ (2\times) \\ 2,73 \ (4\times) \\ 2,84 \ (2\times) \\ 2,87 \ (2\times) \end{array}$

Herrn Professor Dr. H. Nowotny, dem Vorstand des Institutes für Physikalische Chemie der Universität Wien, danken wir für anregende Diskussionen.